Mathematics Department Stanford University
Summary of Math 52H Material, 2009

***Note: In some cases here only abbreviations of formal definitions and statements of
theorems are given, and in that case a correct statement would require additional detail;

All such additional detail and proofs should be known.***

Riemann Integral, Volume
See http://www.stanford.edu/class/math52h/supplements/transformation.pdf

Volume zero: A set A has volume zero (or “content zero”) if Ve > 0,3 a finite collection
R1.---, Ry of rectangles with 4 C Uszl R; and Zszl |Rj| < e.

Lemma: A has volume zero if and only for each & > 0 there is a finite collection of balls with
By (x;).j =1,...,0 such that 4 C U]-Q=1Bpj (x;) and ZJQ=1 P <e.

Boundary of a set: 94 = {x € R" : B,(x) N A # @ and B,(x) N (R" \ A) # OV p > 0}.
Various properties of the boundary including (i) 94 is closed, (ii) 3(4 U B) C 94 U 9B, (iii)
d(AN B) C A U 3B, and (iv) the “segment property” that if x € 4 and y € R" \ 4, then there
ist € [0,1] with tx + (1 — 1)y € 94 (which implies in particular that 94 # @ unless A = @ or
A =R"),

Riemann integrals: Upper sum U = Y ;.p (sup; f)|I]| for f : R — R bounded, where
R =a1,b1] x -+ X [an, by] and P a partition of R. Lower sum is same with inf; f in place of
sup; f. Theorem that L(f,P) < U(f. Q) for every choice of partitions P, Q. Definition that
f is Riemann integrable if sup,, L(f, P) = infp U(f, P).

Riemann Criterion: A bounded f : R — R is Riemann integrable <= V¢ > 0,3 a partition
Ps.t. U(f.,'P) < L(f.P) + ¢, and in this case we have U(f,P) —e < [ f < L(f.P) +&.
Theorem that a continuous function f : R — R is Riemann integrable.

Theorem that if S € R has volume zero and if f : R — R is bounded and is continuous
at each point of R\ S, then f is Riemann integrable. Also if g : R — R is bounded and
fIR\'S =g|R\ S, then g is also Riemann integrable and [ f = [z 5.

Volume: the definition vol () = [ xa, where yq is the indicator function of Q (and vol(£2)
exists precisely when yq is Riemann integrable on a rectangle R O Q).

Fact that vol(2) exists <= for each ¢ > 0 there is a partition P of the rectangle R > @ with
Yrer.anazo Il =2 1ep.1cqll| < & and corresponding theorem that vol(Q2) exists (i.e. yq is
Riemann integrable) <= vol(d$2) = 0.

Fubini’s Thm: R = [a1,b1] x -+ X [an, bu], f : R = R bounded =

fR f= f[an,bn](f[al,b1]><~--><[an—1,bn—1] Sx1, oo Xn—1, Xp)dxy - - dxXp—1)dxn
provided all three integrals exist (O.K. if e.g. f is continuous on R).
Linear Transformation of Volume Thm: If Q is bounded and if vol(d2) = 0 then, for any
n x n matrix 4, vol(AQ) exists and vol(4Q) = | det A|vol(R2).
Rough Volume Inequality: f Lipschitz (|| f(x) — f(»)|| < L|lx — y[| V x, yeQ)= vol(f(Q)) <
L"vol(2), provided the volumes exist.

Change of Variables Formula: U is open in R?, f : U — R" 1:1, C!, det Df # 0Vx € U,
Q bounded, and U 5 © U 9Q = vol(f(Q)) exists and [;q) & = [q g o f |det Df] for any
bounded continuous g : f(2) — R. Important special case: transformation of volume
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formula vol (f(Q)) = [ |det Df|, which corresponds to the choice g = 1 in the change of
variables formula.

Alternate version of change of variables formula as on p.7 of supplement http: //www.stanford.
edu/class/math52h/supplements/transformation.pdf.

Applications of the Change of Variables Formula, including Polar and Spherical Coordinates

on various domains.

Real Analysis (Real Analysis Lectures 7,8,9)

Theorem that AC= convergence for complex series.
Cauchy Product Thm: Y ;2 jan. Y negbn AC = Y 02 qcn AC and (32 an)(D peobn) =
> oo cn where ¢ = Y7 aiby—; for each n.
General vector spaces V—8 vector space axioms and examples of such spaces.
Inner product and properties: (v, w) = (w, v), (v, w) is linear in both v and w and (v,v) >0
unless v = 0. Definition |[v|| = /(v, v).
Bessel’s Inequality: 3°0° | ¢2 < ||v]|%.
If f is 2m-periodic and piecewise continuous and both one-sided derivatives limy w
w exist at a point x, then the trigonometric Fourier series

D+ 3 2l (an cosnx + by, sinnx)
converges to f(x) at that x, assuming we take f(x) = %( f(x4) + f(x-)) in case f is not
continuous at Xx.

and limhi,O

Differential Forms

A 1-linear function from R” — R is £(v) = >_7_; a,v;. Special example dx;(v) = v;; then
any 1-linear £ can be written £ = Y7_; a;dx;.
A 1-form on U isa map U — {1-linear functions on R"}. Thus |y = }"7_; a;(x)dx; where
a; are given functions of x on U. w is C" on U means each a; is C. Important special case:
if f:U — Ris C! then the differential df of f, defined by df = Y7_, D; f dx;, is a 1-form
onU.
¢ is a k-multilinear function (abbreviated k-linear here) on R” if £ : R" x---xR" (k factors) — R
is linear in each factor (thus £(av + Bw, vy, ..., vk) = al(v,va,...,vk) + BL(w, v, ..., V),
with a similar identity for each of the other entries).
A k-linear function £ is alternating if £ (v, ..., Vi, ..., Vj, ... 0k) = —L(U1, ... Vjyee iy, Vk)
fori # j. (i.e., interchanging two entries changes the sign).
Ulip, = Vkiy
The definition dxj; A+--Adxi, (v1,...,v5) = det| : : | for any k-tuple (i1, ..., ix)
Vlig o0 Vkig
of integers € {1,...,n}.
Standard Form Lemma: Any alternating k-linear function £ : R” x --- x R" (k factors) — R
can be written )" o i) <..cif <p @iyig dXiy A -+ A dXj, Where a;,...;, € R are unique, given by
ajyi, =4(e,, - ,e;). (And so the alternating k-linear functions on R” are a vector space of
dimension (}) with basis {dx;) A---Adx; 11 <ij <ip<--- <ix <n}.)
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o A k-form on aset U C R" is a map U — {alternating k-linear functions}. Thus w|, =

D 1 <iy<iy<o<iy <n Qirwiy X)dXiy A+ Adx;, for some choice of real-valued functions ;...
onU.
e More notation: Ty , = {(i1,-+- i) : 1 <iy <--- <ip <n}, I = (i1,-++ ,ig) € g n, s0 any

k-form » can be written @ = 377, ardxy, where dx; = dxj; A+ Adxi.

o Definition of wedge product of a k-form and an ¢-form: 0 = 37,7, ardxi,n =3¢z, brdxy,
thenw Anp = Yorety . uet, , arbsdxry where I, J = (i1,...,ik, j1.. .., je). The wedge prod-
uct is associative, and it is linear in each factor, w A n = (=1)¥n A w.

e Exterior Derivative: If w is a C! k-form on U then dw = Zlezk,n day ANdxy =
Y rety pjefln) (Djar(x))dx; Adxy. Thus do is a (k + 1)-form on U (zero if k > n).

e Properties of exterior derivative: (i) (linear) d(Aw1 + pw2) = Adw) + pdwy, (i) d(fw) =
df Ao + fdw, (i) d(w A7) = (dw) A1+ (=) o A dy, (iv) d(dw) = 0 if w is a C? k-form,
for w, w1, wy a C! k-forms on U, na C! {-form on U and f a C! function on U. (Note that
these also apply to the case k = 0—a zero C/ form is just a C/ function).

e DPullback f*w: If f : U — V is C! where U ¢ R" and V C R™ are open, and if =
Yrer,,, ardxyisa k-form in V, then for x € U we define f*wl|, = Yrery,, a(f(X)dfrlx
(where df; = dfiy A+ ~dfy,) = D IeTi T €T n AT © flxdet(Dy f1)|x dx s, which is a k-
form on U.

e Basic properties of pullback: (i) (linear) f*(Aw; + pw2) = Af*w1 + puf*ws, (i) f*(how) =
ho ff*w, (iii) f*(wAm) = (f*o) A (f*), (V) (f 0 g)*w = g*(f*w),

o Pullback and exterior derivative commute: df *w = f*dw assuming f : U — V is C? and o
isaC! k-formon V.

o Ifw =adx; A--- Adx, on an open U C Q U 9Q with Q bounded and 9Q2 having volume
zero, and if a continuous on € U 9L, then we define [0 = [a. Observe that (using
definition of pullback) we then have [, f*w = [g(a o f)det Df assuming f: U — V is C!,
U,V open in R", » = is a continuous n-form on V, and U > Q U 9Q. With this notation,
assuming f is in addition 1:1 and det Df # 0, the change of variables formula can be written
Jry@ =% Jq [Tw, with “+” if det Df > 0in @ and “~” if det Df < 0 in Q

Line integrals
e Line Integral: y : [a,b] — U is C!, U open in R"; y need not be 1:1, nor do we need
y" # 0. Definition: If @ is a continuous 1-form on U, then we define fy w = f[a,b] y*o(=

| b a(y(t)) -y (t)dt), which is independent of parameterization, in the sense that if y = o ¢,
where B : [c,d] — U and ¢ : [a,b] — R with 8,¢ C!, ¢’ > 0 and ¢([a,b]) = [c,d], then
J, @ = [ . (Proof via change of variables formula from 1-variable calculus.)

e Fundamental Thm of Calc for Line Integrals: If y : [a,b] — U is continuous and piecewise
Cland fis C! on U, then [, df = f(y()) — f(y(a)); note the path independence.

e U open, w C° on U = The following are equivalent:
e wisexactinU (i.e. w = df forsome C! f:U — R)
o fy o is path independent in U (i.e. fy w = fya) whenever y(a) = y(c) and y(b) = y(d)
and y : [a,b] - U,y : [c,d] — U are both piecewise C! curves in U.)



Definition of simply connected domain (U is simply connected if any for C! curve y : [a,b] —
U with y(a) = y(b) there isa C! map & : [a,b] x [0, 1] — U with h(z,0) = y(t), h(t,1) =y
for some y € U, and h(a,s) = h(b,s) Vs € [0, 1]).) Proof (using Stokes Thm on a rectangle)
that if U is simply connected then w a closed (i.e. dw = 0) C! 1-form on U = o exact (i.e.
w = df for some C? function f : U — R).

k-vol of k-dim parallelepiped P C R”: P spanned by aj,---,a; (i.e. P = {Z;(:Njgj :
,....t €[0,1]}) = k-vol(P) = v/detA" 4, where A4 is the n x k matrix with columns equal
to the given vectors a1, .. ., dk.

Submanifolds
http://www.stanford.edu/class/math52h/supplements/submanifold-09.pdf

Formal definition: M is a k-dimensional C!' submanifold in R” if there is a family of 1:1
C! maps {¢y : Uy — Wy}gen with each W, open in R* and M C Ugep Wy, and where for
each o € A (Ais an index set) we have U, open in R¥, Djgy(x), ..., Dygy(x) are Li. for each
X € Uy, 9o(Uy) = M N Wy, and ¢ 1 : M N Wy — U, is continuous. The g are called “local
coordinate charts” for M and the entire collection A = {@y : Uy — Wy }gen is called an atlas
for M.

The fact that the above definition is equivalent to the “local graph” definition used in Math 51H.
Fact (using inverse function theorem) that ¢! is the restriction of a C! function (defined
in an open set) to M N W, (see p.2 of lecture supplement on submanifolds), and hence in
particular that the transition maps are C!.

If oo (Ua) Npp(Up) # @ (i.e. M N Wo N W # @), then Upg = 9z '(M N Wy N W) will be
non-empty and we can define g5 = gogl 0 @a : Uyg — Upys this is C! because (see above)
(pﬂfl is the restriction to M N Wp of a C! function. The g, so defined are called “transition
maps.”

Important special case: When there is just one coordinate chart ¢ : U — W (i.e. the atlas
has just 1 element), so M = ¢(U). In this case we sometimes refer to M as a “k dimensional
parametrized surface.”

As discussed in lecture (using an informal argument based on the fact that a C! map ¢ is
well approximated near a point x¢ by the affine function ¢(x¢) + Dg(x0)(x — x0)) the above
expression for the k-volume of a k-dimensional parallelepiped leads naturally to the following
definition:

Definition of integration of a function over a k-dimensional parametrized surface): Let
¢ : U — R" and Q C U be as above and let f be a continuous real-valued function on Q.

Then we define
(%) / f= / f 0 p\/det(Dp)TDy).
() Q

Remark (k-volume of a k-dimensional parametrized surface): Notice an important special
case of the above definition occurs when we take f = 1 in which case the left side is defined

to be the k-volume of f(2) (i.e. k-vol(f(R2))); thus
-vol(g(@) = [ /der(Dpy D).
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e The fact that the above definition is independent of which map ¢ we use: i.e. if g : U — R”
isa 1:1 C! map with D1@(x), ..., Dr@(x) Li. at each x € Q and if @(U) = ¢(U) then

(45) /Q £ 0 g \Jdet(Dg)' Dg) = fﬁfoa\/det((D@TD@

with @ = ¢~ 1(¢(R)). Notice that an extremely important example of occurs when we have
two coordinate charts gy : Uy — Wy, g : Ug — Wp of a submanifold M with M nW, "Wy #
@; in that case we do indeed have exactly the above with ¢ = ¢ |Uyg, ¢ = ¢g|Ugqy, U = Uyg,
U = Uy, and note that in this case ¥ is the transition map ¢,5 = (p/gl 0 ¢y 1 Uyp — Upy.

e Definition of integration of a k-form over a k-dimensional parametrized surface:

*) /(,,(Q)“’Z/Qﬁ”*‘“-

e The fact that (with ¢ : U — R” as in (*x))

(1) /Q o*o = + /Q 7o,

with £ according as the “transition map” ¥ = @~ ! o ¢ (which enables us to switch between

the representations ¢ and ¢ because ¢ = ¢ o ¥) is orientation preserving or reversing.

e Formal definition: M is a k-dimensional C! submanifold-with-boundary in R” if there is a
family of 1:1 C! maps {¢q : Uy — Wy }aen with each W, open in R? and M C Ugep Wy,
and where for each @ € A (Ais an index set) we have D¢y (x), ..., Drpy(x) are Li. for each
X € Uy, pu(Uy) = M N Wy, and ¢! : M N W, — U, is continuous, and for the set Uy there
are 2 possibilities:
either (a) Uy is open in R¥ or (b) Uy = V, N R’_i where V, is open in R* and ]R’fF = {x eRk:
x; > 0} and V, N (R¥1 x {0}) # @. In case (a) we call ¢, an “interior coordinate chart” and
in case (b) we call ¢y a boundary coordinate chart. We also write A = Ajpc U Apgry, where
@ € Ay if @y is an interior coordinate chart, and « € Ayqyy if o is a boundary coordinate
chart.

e Definition: dM =boundary of M = Une Ay @a(Ua N (R¥=1 x {0}) and the fact that IM #
@ = M is a (k — 1)-dimensional C! submanifold without boundary.

e Lemma: M is either empty (called manifold-without-boundary) or is a (k — 1)-dimensional
manifold-with-boundary with atlas {@y : Uy — R"}4e Abdsy where Uy = {x e RF=1: [x,0] €
Uy N (R % {0})} and @y = @a[x, 0], x € Uy. {@n : Uy — R"} orients M if {¢y : Uy }aen
orients M.

e Lemma: M \ dM is relatively open in M; that is, there is an open set W C R” such that
M\ oM =MnW. (Q.6 of hw8.)

e As in the case of C! manifolds without boundary we again have C! transition maps g5 =
ﬁ_l o @y : Uyp — Ugq.

e For g € M, the tangent space of M at g is defined by T,M = {y’(0) : y : [0,8) —
R" is C! for some § > 0, and y[0,8) C M with y(0) = ¢}.



Lemma: If g € M \ dM, T; M is a k-dimensional subspace of R” and in fact is given explicitly
as span {D1@a(p), ..., Drpa(p)} for any coordinate chart ¢y : Uy — R” with ¢ € ¢o(Uy)
and any p € U, with ¢o(p) = g. If g € IM, T;M is a k-dimensional half-space of R” and
given explicitly as {Z;;l ¢jDjpa(p) : c1,...,ck—1 € R, ¢ > 0} for any coordinate chart
¢a : Uy — R" with o € Ayq,y and any p € Uy with ¢4(p) = ¢ for some p € Uy NR¥1 x {0}.
Definition: An atlas A = {¢q : Uy — Wa}laea is an orienting atlas for M (“provides an
orientation for M”) if det Dgypg > OV a, B € A such gyp is defined (i.e. for all @, B € A such
that M N W, N Wp # D).

The fact that A = {@y : Uy — Wy }gaen is an or1ent1ng atlas for M and M # @ = A= {@y :
Uy — Wa taeny, 1S an orienting atlas for dM, where Uy = {x :[x.0] € Uy N (R*1 x {0})}
and @o (x) = @alx, 0] ([x.0] = (x1..... xk-1,0)").

Partition of Unity: Given a compact C! k-dimensional manifold M in R” with atlas A =
{¢a : Uy = Wy}taea we can select finitely many non-negative C* functions hy,...,hy :
R” — R such that Y h; = 1 on some open W > M and for each i = 1,..., N there is
a; € A with {x : hi(x) # 0} contained in a compact subset K; C Wy, .

Integration of functions on a compact k-dimensional submanifold M with boundary (not
necessarily oriented) with atlas A: With a partition of unity &1,...,hx as above, and moti-
vated by (x), (x*) we define

Ju £ =201 Ju,, hi o vy f o 9e V/det(Dga) D).
Lemma: This is independent of the particular choice of the choice of partition of unity.

The k-volume of M (k-vol(M), M as above) is defined to be f;, 1 (i.e. [, f in the special
case when f = 1).

Integration of k-forms on a compact oriented k-dimensional manifold M oriented by the
atlas A: With a partition of unity &1, ..., hy as above, and motivated by (f), (f1) we define

Juo= ZzN=1 fUai Pq; (hi ®).
Lemma: This is independent of the particular choice of the choice of partition of unity.

Stokes Thm: M is a compact oriented k-dim C? manifold-with-boundary in R* and aM

. {@a}aen,, ifkiseven
is oriented by { {@a}aeAbdZ if kis odd, @ (x1. -+, xk—1) = Pa(—X1. %2, - Xg—1). Then
far dw =[5, @ forany C! (k — 1)-form » defined on an open V 2> M.
Volume form v = 3,7,  brdxy is the k-form on M (assuming M oriented) which is defined
on M N Wy by

(det Dggr) © (pc;l

~ /(et(Dya) Doa)) o 01

and this expression is independent of « (i.e. we get the same result on M N W, N Wy if we use
the chart ¢g in the definition instead of ¢).

I e Ik,n»

Proof that v has “length 1” in the sense that }";c7, b7 =1 o0n M.

(Connection between integration of functions and integration of forms.) Let M be a compact
oriented k-dimensional C! submanifold with boundary (possibly with M = @) and v the
volume form of M. Then for any CY k-form w on M, Sy @ = [3 (@, v), where (w,v) is the
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inner product defined tobe } ; 7, arbrincasew =3 ;cr, ardxpandv =3 ;o7 brdxy.
In particular (since (v, v) = drety b? = 1) we have [, v = [}, (v,v) = [}, 1 = k-vol(M)
(which explains why v is called the volume form).

o When k = n—1: M is compact oriented with volume form v = 377_; bjdx; A ---dxj—1 A
dxjp1 A--dxy = v =Y7_1(=1)/7bje; is a continuous unit normal for M.

e When k = n, Dy, is an n x n matrix, so det D¢, makes sense and is non-zero, so WLOG
we can assume it is positive in Uy (otherwise replace it by ¢ o R where R is the reflection
(x1,...,Xp) > (—=x1,X2,..., X)), in which case the atlas automatically orients M (since pop =
(‘051 o @ then has Jacobian matrix of positive determinant). Also, in this case k = n, V =
M \ M is open subset of R" and aV = dM (see hw1l0, Q.4). In this case Stokes theorem
(applied to the (n—1)-formw = Y7, (=1)'"a;dx;, where a; are C! inan open U D VU3V),
implies the “divergence theorem” that

/divg=/ a-v,
14 v

where a = (ai,...,an)", diva = 3} 7_; Dja; and v is the unit normal of 3V (= dM) pointing
out of V.

o When k = 2,n = 3, Stokes Theorem (applied to the 1-form Y~7_; a;dx;) gives

/ (ng)-v:/ T-ads,
M oM

where s is the arc-length parameter on M, Vxa = (D2az—D3ay, D3a1—D1a3, Diaz—Djar)’,
v is the unit normal of M, and 7 is the unit tangent of M, oriented so that v = t x y, where
at each point g € IM, y|, is the unit vector in T, M which is normal to = and points into M.

(Q.2 of hw10.)

e Applications of Stokes Theorem, including proofs of the fundamental theorem of algebra and
the Brouwer fixed point theorem.



