Mathematics Department Stanford University Summary of Math 52H Material, 2009

Note: In some cases here only abbreviations of formal definitions and statements of theorems are given, and in that case a correct statement would require additional detail; All such additional detail and proofs should be known.

Riemann Integral, Volume

See http://www.stanford.edu/class/math52h/supplements/transformation.pdf

- Volume zero: A set A has volume zero (or "content zero") if $\forall \varepsilon > 0, \exists$ a finite collection R_1, \dots, R_N of rectangles with $A \subset \bigcup_{j=1}^N R_j$ and $\sum_{j=1}^N |R_j| < \varepsilon$.
- Lemma: A has volume zero if and only for each $\varepsilon > 0$ there is a finite collection of balls with $B_{\rho_j}(\underline{x}_j), j = 1, \dots, Q$ such that $A \subset \bigcup_{j=1}^Q B_{\rho_j}(\underline{x}_j)$ and $\sum_{j=1}^Q \rho_j^n < \varepsilon$.
- Boundary of a set: $\partial A = \{ \underline{x} \in \mathbb{R}^n : B_\rho(\underline{x}) \cap A \neq \emptyset \text{ and } B_\rho(\underline{x}) \cap (\mathbb{R}^n \setminus A) \neq \emptyset \forall \rho > 0 \}$. Various properties of the boundary including (i) ∂A is closed, (ii) $\partial (A \cup B) \subset \partial A \cup \partial B$, (iii) $\partial (A \cap B) \subset \partial A \cup \partial B$, and (iv) the "segment property" that if $\underline{x} \in A$ and $\underline{y} \in \mathbb{R}^n \setminus A$, then there is $t \in [0, 1]$ with $t\underline{x} + (1 - t)\underline{y} \in \partial A$ (which implies in particular that $\partial A \neq \emptyset$ unless $A = \emptyset$ or $A = \mathbb{R}^n$).
- Riemann integrals: Upper sum $U = \sum_{I \in \mathcal{P}} (\sup_I f) |I|$ for $f : R \to \mathbb{R}$ bounded, where $R = [a_1, b_1] \times \cdots \times [a_n, b_n]$ and \mathcal{P} a partition of R. Lower sum is same with $\inf_I f$ in place of $\sup_I f$. Theorem that $L(f, \mathcal{P}) \leq U(f, \mathcal{Q})$ for every choice of partitions \mathcal{P}, \mathcal{Q} . Definition that f is Riemann integrable if $\sup_{\mathcal{P}} L(f, \mathcal{P}) = \inf_{\mathcal{P}} U(f, \mathcal{P})$.
- Riemann Criterion: A bounded $f : R \to \mathbb{R}$ is Riemann integrable $\iff \forall \varepsilon > 0, \exists$ a partition \mathcal{P} s.t. $U(f, \mathcal{P}) < L(f, \mathcal{P}) + \varepsilon$, and in this case we have $U(f, \mathcal{P}) \varepsilon < \int_{R} f < L(f, \mathcal{P}) + \varepsilon$.
- Theorem that a continuous function $f : R \to \mathbb{R}$ is Riemann integrable.
- Theorem that if $S \subset R$ has volume zero and if $f : R \to \mathbb{R}$ is bounded and is continuous at each point of $R \setminus S$, then f is Riemann integrable. Also if $g : R \to \mathbb{R}$ is bounded and $f | R \setminus S = g | R \setminus S$, then g is also Riemann integrable and $\int_R f = \int_R g$.
- Volume: the definition vol $(\Omega) = \int_R \chi_\Omega$, where χ_Ω is the indicator function of Ω (and vol (Ω) exists precisely when χ_Ω is Riemann integrable on a rectangle $R \supset \Omega$).
- Fact that $\operatorname{vol}(\Omega)$ exists \iff for each $\varepsilon > 0$ there is a partition \mathcal{P} of the rectangle $R \supset \Omega$ with $\sum_{I \in \mathcal{P}, I \cap \Omega \neq \emptyset} |I| \sum_{I \in \mathcal{P}, I \subset \Omega} |I| < \varepsilon$ and corresponding theorem that $\operatorname{vol}(\Omega)$ exists (i.e. χ_{Ω} is Riemann integrable) $\iff \operatorname{vol}(\partial \Omega) = 0$.
- Fubini's Thm: $R = [a_1, b_1] \times \cdots \times [a_n, b_n], f : R \to \mathbb{R}$ bounded \Rightarrow

$$\int_{R} f = \int_{[a_{n},b_{n}]} (\int_{[a_{1},b_{1}]\times\cdots\times[a_{n-1},b_{n-1}]} f(x_{1},\ldots,x_{n-1},x_{n}) dx_{1}\cdots dx_{n-1}) dx_{n}$$

- provided all three integrals exist (O.K. if e.g. f is continuous on R).
- Linear Transformation of Volume Thm: If Ω is bounded and if $vol(\partial \Omega) = 0$ then, for any $n \times n$ matrix A, $vol(A\Omega)$ exists and $vol(A\Omega) = |\det A|vol(\Omega)$.
- Rough Volume Inequality: f Lipschitz $(||f(x) f(y)|| \le L ||x y|| \forall x, y \in \Omega) \Rightarrow vol(f(\Omega)) \le L^n vol(\Omega)$, provided the volumes exist.
- Change of Variables Formula: U is open in \mathbb{R}^n , $f: U \to \mathbb{R}^n$ 1:1, C^1 , det $Df \neq 0 \forall x \in U$, Ω bounded, and $U \supset \Omega \cup \partial \Omega \Rightarrow \operatorname{vol}(f(\Omega))$ exists and $\int_{f(\Omega)} g = \int_{\Omega} g \circ f |\det Df|$ for any bounded continuous $g: f(\Omega) \to \mathbb{R}$. Important special case: transformation of volume

formula vol $(f(\Omega)) = \int_{\Omega} |\det Df|$, which corresponds to the choice $g \equiv 1$ in the change of variables formula.

- Alternate version of change of variables formula as on p.7 of supplement http://www.stanford.edu/class/math52h/supplements/transformation.pdf.
- Applications of the Change of Variables Formula, including Polar and Spherical Coordinates on various domains.

Real Analysis (Real Analysis Lectures 7,8,9)

- Theorem that $AC \Rightarrow$ convergence for complex series.
- Cauchy Product Thm: $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n AC \Rightarrow \sum_{n=0}^{\infty} c_n AC$ and $(\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} c_n$ where $c_n = \sum_{i=0}^{n} a_i b_{n-i}$ for each n.
- General vector spaces V—8 vector space axioms and examples of such spaces.
- Inner product and properties: $\langle v, w \rangle = \langle w, v \rangle$, $\langle v, w \rangle$ is linear in both v and w and $\langle v, v \rangle > 0$ unless v = 0. Definition $||v|| = \sqrt{\langle v, v \rangle}$.
- Bessel's Inequality: $\sum_{n=1}^{\infty} c_n^2 \le ||v||^2$.
- If f is 2π -periodic and piecewise continuous and both one-sided derivatives $\lim_{h \downarrow 0} \frac{f(x+h)-f(x_+)}{h}$ and $\lim_{h \downarrow 0} \frac{f(x-h)-f(x_-)}{h}$ exist at a point x, then the trigonometric Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

converges to f(x) at that x, assuming we take $f(x) = \frac{1}{2}(f(x_+) + f(x_-))$ in case f is not continuous at x.

Differential Forms

- A 1-linear function from $\mathbb{R}^n \to \mathbb{R}$ is $\ell(\underline{v}) = \sum_{j=1}^n a_j v_j$. Special example $dx_j(\underline{v}) = v_j$; then any 1-linear ℓ can be written $\ell = \sum_{j=1}^n a_j dx_j$.
- A 1-form on U is a map $U \to \{1 \text{-linear functions on } \mathbb{R}^n\}$. Thus $\omega|_{\underline{x}} = \sum_{j=1}^n a_j(\underline{x}) dx_j$ where a_j are given functions of \underline{x} on U. ω is C^N on U means each a_j is C^N . Important special case: if $f: U \to \mathbb{R}$ is C^1 then the differential df of f, defined by $df = \sum_{j=1}^n D_j f dx_j$, is a 1-form on U.
- ℓ is a *k*-multilinear function (abbreviated *k*-linear here) on \mathbb{R}^n if $\ell : \mathbb{R}^n \times \cdots \times \mathbb{R}^n$ (*k* factors) $\to \mathbb{R}$ is linear in each factor (thus $\ell(\alpha \underline{v} + \beta \underline{w}, \underline{v}_2, \dots, \underline{v}_k) = \alpha \ell(\underline{v}, \underline{v}_2, \dots, \underline{v}_k) + \beta \ell(\underline{w}, \underline{v}_2, \dots, \underline{v}_k)$, with a similar identity for each of the other entries).
- A *k*-linear function ℓ is alternating if $\ell(\underline{v}_1, \dots, \underline{v}_i, \dots, \underline{v}_j, \dots, \underline{v}_k) = -\ell(\underline{v}_1, \dots, \underline{v}_j, \dots, \underline{v}_i, \dots, \underline{v}_k)$ for $i \neq j$. (i.e., interchanging two entries changes the sign).
- The definition $dx_{i_1} \wedge \dots \wedge dx_{i_k}(\underline{v}_1, \dots, \underline{v}_k) = \det \begin{pmatrix} v_{1i_1} & \cdots & v_{ki_1} \\ \vdots & \vdots & \vdots \\ v_{1i_k} & \cdots & v_{ki_k} \end{pmatrix}$ for any k-tuple (i_1, \dots, i_k)

of integers $\in \{1, \ldots, n\}$.

Standard Form Lemma: Any alternating k-linear function l : Rⁿ ×···× Rⁿ (k factors) → R can be written ∑_{1≤i1<i2<···<ik≤n} a_{i1···ik} dx_{i1} ∧··· ∧ dx_{ik} where a_{i1···ik} ∈ R are unique, given by a_{i1···ik} = l(e_{i1}, ···, e_{ik}). (And so the alternating k-linear functions on Rⁿ are a vector space of dimension (ⁿ_k) with basis {dx_{i1} ∧··· ∧ dx_{ik} : 1 ≤ i₁ < i₂ <··· < i_k ≤ n}.)

- A k-form on a set $U \subset \mathbb{R}^n$ is a map $U \to \{\text{alternating k-linear functions}\}$. Thus $\omega|_{\underline{x}} = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} a_{i_1 \cdots i_k}(\underline{x}) dx_{i_1} \wedge \cdots \wedge dx_{i_k}$ for some choice of real-valued functions a_{i_1, \dots, i_k} on U.
- More notation: $\mathcal{I}_{k,n} \equiv \{(i_1, \dots, i_k) : 1 \le i_1 < \dots < i_k \le n\}, I = (i_1, \dots, i_k) \in \mathcal{I}_{k,n}, \text{ so any } k$ -form ω can be written $\omega = \sum_{I \in \mathcal{I}_{k,n}} a_I dx_I$, where $dx_I = dx_{i_1} \land \dots \land dx_{i_k}$.
- Definition of wedge product of a *k*-form and an ℓ -form: $\omega = \sum_{I \in \mathcal{I}_{k,n}} a_I dx_I, \eta = \sum_{J \in \mathcal{I}_{l,n}} b_J dx_J$, then $\omega \wedge \eta = \sum_{I \in \mathcal{I}_{k,n}, J \in \mathcal{I}_{l,n}} a_I b_J dx_{I,J}$ where $I, J = (i_1, \ldots, i_k, j_1, \ldots, j_\ell)$. The wedge product is associative, and it is linear in each factor, $\omega \wedge \eta = (-1)^{k\ell} \eta \wedge \omega$.
- Exterior Derivative: If ω is a C^1 k-form on U then $d\omega = \sum_{I \in \mathcal{I}_{k,n}} da_I \wedge dx_I = \sum_{I \in \mathcal{I}_{k,n}, j \in \{1, \dots, n\}} (D_j a_I(\underline{x})) dx_j \wedge dx_I$. Thus $d\omega$ is a (k + 1)-form on U (zero if $k \ge n$).
- Properties of exterior derivative: (i) (linear) d(λω₁ + μω₂) = λdω₁ + μdω₂, (ii) d(fω) = df ∧ ω + fdω, (iii) d(ω ∧ η) = (dω) ∧ η + (-1)^kω ∧ dη, (iv) d(dω) = 0 if ω is a C² k-form, for ω, ω₁, ω₂ a C¹ k-forms on U, η a C¹ ℓ-form on U and f a C¹ function on U. (Note that these also apply to the case k = 0—a zero C^j form is just a C^j function).
- Pullback $f^*\omega$: If $f: U \to V$ is C^1 where $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ are open, and if $\omega = \sum_{I \in \mathcal{I}_{k,m}} a_I dx_I$ is a k-form in V, then for $\underline{x} \in U$ we define $f^*\omega|_{\underline{x}} = \sum_{I \in \mathcal{I}_{k,m}} a_I(f(\underline{x}))df_I|_{\underline{x}}$ (where $df_I = df_{i_1} \wedge \cdots \wedge df_{i_k}$) $= \sum_{I \in \mathcal{I}_{k,m}, J \in \mathcal{I}_{k,n}} a_I \circ f|_{\underline{x}} \det(D_J f_I)|_{\underline{x}} dx_J$, which is a k-form on U.
- Basic properties of pullback: (i) (linear) $f^*(\lambda\omega_1 + \mu\omega_2) = \lambda f^*\omega_1 + \mu f^*\omega_2$, (ii) $f^*(h\omega) = h \circ ff^*\omega$, (iii) $f^*(\omega \land \eta) = (f^*\omega) \land (f^*\eta)$, (iv) $(f \circ g)^*\omega = g^*(f^*\omega)$,
- Pullback and exterior derivative commute: $df^*\omega = f^*d\omega$ assuming $f: U \to V$ is C^2 and ω is a C^1 k-form on V.
- If $\omega = a \, dx_1 \wedge \cdots \wedge dx_n$ on an open $U \subset \Omega \cup \partial\Omega$ with Ω bounded and $\partial\Omega$ having volume zero, and if a continuous on $\Omega \cup \partial\Omega$, then we define $\int_{\Omega} \omega = \int_{\Omega} a$. Observe that (using definition of pullback) we then have $\int_{\Omega} f^* \omega = \int_{\Omega} (a \circ f) \det Df$ assuming $f : U \to V$ is C^1 , U, V open in \mathbb{R}^n , $\omega =$ is a continuous *n*-form on *V*, and $U \supset \Omega \cup \partial\Omega$. With this notation, assuming *f* is in addition 1:1 and det $Df \neq 0$, the change of variables formula can be written $\int_{f(\Omega)} \omega = \pm \int_{\Omega} f^* \omega$, with "+" if det Df > 0 in Ω and "-" if det Df < 0 in Ω

Line integrals

- Line Integral: $\gamma : [a,b] \to U$ is C^1 , U open in \mathbb{R}^n ; γ need not be 1:1, nor do we need $\gamma' \neq 0$. Definition: If ω is a continuous 1-form on U, then we define $\int_{\gamma} \omega = \int_{[a,b]} \gamma^* \omega (\equiv \int_a^b \underline{a}(\gamma(t)) \cdot \gamma'(t) dt)$, which is independent of parameterization, in the sense that if $\gamma = \beta \circ \varphi$, where $\beta : [c,d] \to U$ and $\varphi : [a,b] \to \mathbb{R}$ with $\beta, \varphi C^1, \varphi' > 0$ and $\varphi([a,b]) = [c,d]$, then $\int_{\gamma} \omega = \int_{\beta} \omega$. (Proof via change of variables formula from 1-variable calculus.)
- Fundamental Thm of Calc for Line Integrals: If $\gamma : [a, b] \to U$ is continuous and piecewise C^1 and f is C^1 on U, then $\int_{\gamma} df = f(\gamma(b)) f(\gamma(a))$; note the path independence.
- U open, ωC^0 on $U \Rightarrow$ The following are equivalent:
 - ω is exact in U (i.e. $\omega = df$ for some $C^1 f : U \to \mathbb{R}$)
 - $\int_{\gamma} \omega$ is path independent in U (i.e. $\int_{\gamma} \omega = \int_{\widetilde{\gamma}} \omega$ whenever $\gamma(a) = \widetilde{\gamma}(c)$ and $\gamma(b) = \widetilde{\gamma}(d)$ and $\gamma : [a, b] \to U, \widetilde{\gamma} : [c, d] \to U$ are both piecewise C^1 curves in U.)

- Definition of simply connected domain (U is simply connected if any for C^1 curve $\gamma : [a, b] \rightarrow U$ with $\gamma(a) = \gamma(b)$ there is a C^1 map $h : [a, b] \times [0, 1] \rightarrow U$ with $h(t, 0) \equiv \gamma(t)$, $h(t, 1) \equiv \gamma(t)$ for some $\gamma \in U$, and $h(a, s) = h(b, s) \forall s \in [0, 1]$).) Proof (using Stokes Thm on a rectangle) that if U is simply connected then ω a closed (i.e. $d\omega = 0$) C^1 1-form on $U \Rightarrow \omega$ exact (i.e. $\omega = df$ for some C^2 function $f : U \rightarrow \mathbb{R}$).
- *k*-vol of *k*-dim parallelepiped $P \subset \mathbb{R}^n$: *P* spanned by $\underline{a}_1, \dots, \underline{a}_k$ (i.e. $P = \{\sum_{j=1}^k t_j \underline{a}_j : t_1, \dots, t_k \in [0, 1]\}) \Rightarrow k \cdot vol(P) = \sqrt{\det A^T A}$, where *A* is the $n \times k$ matrix with columns equal to the given vectors $\underline{a}_1, \dots, \underline{a}_k$.

Submanifolds

http://www.stanford.edu/class/math52h/supplements/submanifold-09.pdf

- Formal definition: M is a k-dimensional C^1 submanifold in \mathbb{R}^n if there is a family of 1:1 $C^1 \max \{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ with each W_{α} open in \mathbb{R}^n and $M \subset \bigcup_{\alpha \in \Lambda} W_{\alpha}$, and where for each $\alpha \in \Lambda$ (Λ is an index set) we have U_{α} open in \mathbb{R}^k , $D_1\varphi_{\alpha}(\underline{x}), \ldots, D_k\varphi_{\alpha}(\underline{x})$ are l.i. for each $\underline{x} \in U_{\alpha}, \varphi_{\alpha}(U_{\alpha}) = M \cap W_{\alpha}$, and $\varphi_{\alpha}^{-1} : M \cap W_{\alpha} \to U_{\alpha}$ is continuous. The φ_{α} are called "local coordinate charts" for M and the entire collection $\mathcal{A} = \{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ is called an atlas for M.
- The fact that the above definition is equivalent to the "local graph" definition used in Math 51H.
- Fact (using inverse function theorem) that φ_{α}^{-1} is the restriction of a C^1 function (defined in an open set) to $M \cap W_{\alpha}$ (see p.2 of lecture supplement on submanifolds), and hence in particular that the transition maps are C^1 .
- If $\varphi_{\alpha}(U_{\alpha}) \cap \varphi_{\beta}(U_{\beta}) \neq \emptyset$ (i.e. $M \cap W_{\alpha} \cap W_{\beta} \neq \emptyset$), then $U_{\alpha\beta} = \varphi_{\alpha}^{-1}(M \cap W_{\alpha} \cap W_{\beta})$ will be non-empty and we can define $\varphi_{\alpha\beta} = \varphi_{\beta}^{-1} \circ \varphi_{\alpha} : U_{\alpha\beta} \to U_{\beta\alpha}$; this is C^{1} because (see above) φ_{β}^{-1} is the restriction to $M \cap W_{\beta}$ of a C^{1} function. The $\varphi_{\alpha\beta}$ so defined are called "transition maps."
- Important special case: When there is just one coordinate chart $\varphi : U \to W$ (i.e. the atlas has just 1 element), so $M = \varphi(U)$. In this case we sometimes refer to M as a "k dimensional parametrized surface."
- As discussed in lecture (using an informal argument based on the fact that a C^1 map φ is well approximated near a point \underline{x}_0 by the affine function $\varphi(\underline{x}_0) + D\varphi(\underline{x}_0)(\underline{x} \underline{x}_0)$) the above expression for the *k*-volume of a *k*-dimensional parallelepiped leads naturally to the following definition:

Definition of integration of a function over a k-dimensional parametrized surface): Let $\varphi: U \to \mathbb{R}^n$ and $\Omega \subset U$ be as above and let f be a continuous real-valued function on Ω . Then we define

(*)
$$\int_{\varphi(\Omega)} f = \int_{\Omega} f \circ \varphi \sqrt{\det((D\varphi)^{\mathsf{T}} D\varphi)}.$$

Remark (k-volume of a k-dimensional parametrized surface): Notice an important special case of the above definition occurs when we take $f \equiv 1$ in which case the left side is defined to be *the k-volume of* $f(\Omega)$ *(i.e.* k-vol $(f(\Omega))$ *)*; thus

$$k \operatorname{-vol}(\varphi(\Omega)) = \int_{\Omega} \sqrt{\det((D\varphi)^{\mathrm{T}} D\varphi)}.$$

The fact that the above definition is independent of which map φ we use: i.e. if φ̃ : Ũ → ℝⁿ is a 1:1 C¹ map with D₁φ̃(x),..., D_kφ̃(x) l.i. at each x ∈ Ω and if φ̃(Ũ) = φ(U) then

(**)
$$\int_{\Omega} f \circ \varphi \sqrt{\det((D\varphi)^{\mathsf{T}} D\varphi)} = \int_{\widetilde{\Omega}} f \circ \widetilde{\varphi} \sqrt{\det((D\widetilde{\varphi})^{\mathsf{T}} D\widetilde{\varphi})}$$

with $\widetilde{\Omega} = \widetilde{\varphi}^{-1}(\varphi(\Omega))$. Notice that an extremely important example of occurs when we have two coordinate charts $\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}, \varphi_{\beta} : U_{\beta} \to W_{\beta}$ of a submanifold M with $M \cap W_{\alpha} \cap W_{\beta} \neq \emptyset$; in that case we do indeed have exactly the above with $\varphi = \varphi_{\alpha}|U_{\alpha\beta}, \widetilde{\varphi} = \varphi_{\beta}|U_{\beta\alpha}, U = U_{\alpha\beta}, \widetilde{U} = U_{\beta\alpha}$, and note that in this case ψ is the transition map $\varphi_{\alpha\beta} = \varphi_{\beta}^{-1} \circ \varphi_{\alpha} : U_{\alpha\beta} \to U_{\beta\alpha}$.

• Definition of integration of a k-form over a k-dimensional parametrized surface:

$$(\ddagger) \qquad \qquad \int_{\varphi(\Omega)} \omega = \int_{\Omega} \varphi^* \omega$$

• The fact that (with $\widetilde{\varphi} : \widetilde{U} \to \mathbb{R}^n$ as in (**))

(‡‡)
$$\int_{\Omega} \varphi^* \omega = \pm \int_{\widetilde{\Omega}} \widetilde{\varphi}^* \omega.$$

with \pm according as the "transition map" $\psi = \tilde{\varphi}^{-1} \circ \varphi$ (which enables us to switch between the representations φ and $\tilde{\varphi}$ because $\varphi = \tilde{\varphi} \circ \psi$) is orientation preserving or reversing.

• Formal definition: M is a k-dimensional C^1 submanifold-with-boundary in \mathbb{R}^n if there is a family of 1:1 C^1 maps $\{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ with each W_{α} open in \mathbb{R}^n and $M \subset \bigcup_{\alpha \in \Lambda} W_{\alpha}$, and where for each $\alpha \in \Lambda$ (Λ is an index set) we have $D_1\varphi_{\alpha}(\underline{x}), \ldots, D_k\varphi_{\alpha}(\underline{x})$ are l.i. for each $\underline{x} \in U_{\alpha}, \varphi_{\alpha}(U_{\alpha}) = M \cap W_{\alpha}$, and $\varphi_{\alpha}^{-1} : M \cap W_{\alpha} \to U_{\alpha}$ is continuous, and for the set U_{α} there are 2 possibilities:

either (a) U_{α} is open in \mathbb{R}^k or (b) $U_{\alpha} = V_{\alpha} \cap \mathbb{R}^k_+$ where V_{α} is open in \mathbb{R}^k and $\mathbb{R}^k_+ = \{\underline{x} \in \mathbb{R}^k : x_k \ge 0\}$ and $V_{\alpha} \cap (\mathbb{R}^{k-1} \times \{0\}) \ne \emptyset$. In case (a) we call φ_{α} an "interior coordinate chart" and in case (b) we call φ_{α} a boundary coordinate chart. We also write $\Lambda = \Lambda_{int} \cup \Lambda_{bdry}$, where $\alpha \in \Lambda_{int}$ if φ_{α} is an interior coordinate chart, and $\alpha \in \Lambda_{bdry}$ if φ_{α} is a boundary coordinate chart.

- Definition: ∂M = boundary of $M = \bigcup_{\alpha \in \Lambda_{bdry}} \varphi_{\alpha}(U_{\alpha} \cap (\mathbb{R}^{k-1} \times \{0\}))$ and the fact that $\partial M \neq \emptyset \Rightarrow \partial M$ is a (k-1)-dimensional C^1 submanifold without boundary.
- Lemma: ∂M is either empty (called manifold-without-boundary) or is a (k-1)-dimensional manifold-with-boundary with atlas $\{\widetilde{\varphi}_{\alpha} : \widetilde{U}_{\alpha} \to \mathbb{R}^n\}_{\alpha \in \Lambda_{bdry}}$ where $\widetilde{U}_{\alpha} = \{\underline{x} \in \mathbb{R}^{k-1} : [\underline{x}, 0] \in U_{\alpha} \cap (\mathbb{R}^{k-1} \times \{0\})\}$ and $\widetilde{\varphi}_{\alpha} = \varphi_{\alpha}[\underline{x}, 0], x \in \widetilde{U}_{\alpha}.$ $\{\widetilde{\varphi}_{\alpha} : \widetilde{U}_{\alpha} \to \mathbb{R}^n\}$ orients ∂M if $\{\varphi_{\alpha} : U_{\alpha}\}_{\alpha \in \Lambda}$ orients M.
- Lemma: $M \setminus \partial M$ is relatively open in M; that is, there is an open set $W \subset \mathbb{R}^n$ such that $M \setminus \partial M = M \cap W$. (Q.6 of hw8.)
- As in the case of C^1 manifolds without boundary we again have C^1 transition maps $\varphi_{\alpha\beta} = \beta^{-1} \circ \varphi_{\alpha} : U_{\alpha\beta} \to U_{\beta\alpha}$.
- For $q \in M$, the tangent space of M at q is defined by $T_q M = \{\gamma'(0) : \gamma : [0, \delta) \rightarrow \mathbb{R}^n \text{ is } C^1 \text{ for some } \delta > 0, \text{ and } \gamma[0, \delta) \subset M \text{ with } \gamma(0) = q\}.$

- Lemma: If $q \in M \setminus \partial M$, $T_q M$ is a k-dimensional subspace of \mathbb{R}^n and in fact is given explicitly as span $\{D_1\varphi_\alpha(p), \ldots, D_k\varphi_\alpha(p)\}$ for any coordinate chart $\varphi_\alpha : U_\alpha \to \mathbb{R}^n$ with $q \in \varphi_\alpha(U_\alpha)$ and any $p \in U_\alpha$ with $\varphi_\alpha(p) = q$. If $q \in \partial M$, $T_q M$ is a k-dimensional half-space of \mathbb{R}^n and given explicitly as $\{\sum_{j=1}^k c_j D_j \varphi_\alpha(p) : c_1, \ldots, c_{k-1} \in \mathbb{R}, c_k \ge 0\}$ for any coordinate chart $\varphi_\alpha : U_\alpha \to \mathbb{R}^n$ with $\alpha \in \Lambda_{\text{bdry}}$ and any $p \in U_\alpha$ with $\varphi_\alpha(p) = q$ for some $p \in U_\alpha \cap \mathbb{R}^{k-1} \times \{0\}$.
- Definition: An atlas $\mathcal{A} = \{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ is an orienting atlas for M ("provides an orientation for M") if det $D\varphi_{\alpha\beta} > 0 \forall \alpha, \beta \in \Lambda$ such $\varphi_{\alpha\beta}$ is defined (i.e. for all $\alpha, \beta \in \Lambda$ such that $M \cap W_{\alpha} \cap W_{\beta} \neq \emptyset$).
- The fact that $\mathcal{A} = \{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ is an orienting atlas for M and $\partial M \neq \emptyset \Rightarrow \widetilde{\mathcal{A}} = \{\widetilde{\varphi}_{\alpha} : \widetilde{U}_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda_{bdry}}$ is an orienting atlas for ∂M , where $\widetilde{U}_{\alpha} = \{\underline{x} : [\underline{x}, 0] \in U_{\alpha} \cap (\mathbb{R}^{k-1} \times \{0\})\}$ and $\widetilde{\varphi}_{\alpha}(\underline{x}) = \varphi_{\alpha}[\underline{x}, 0] ([\underline{x}, 0] = (x_1, \dots, x_{k-1}, 0)^T).$
- Partition of Unity: Given a compact C^1 k-dimensional manifold M in \mathbb{R}^n with atlas $\mathcal{A} = \{\varphi_{\alpha} : U_{\alpha} \to W_{\alpha}\}_{\alpha \in \Lambda}$ we can select finitely many non-negative C^{∞} functions h_1, \ldots, h_N : $\mathbb{R}^n \to \mathbb{R}$ such that $\sum_{i=1}^N h_i \equiv 1$ on some open $W \supset M$ and for each $i = 1, \ldots, N$ there is $\alpha_i \in \Lambda$ with $\{\underline{x} : h_i(\underline{x}) \neq 0\}$ contained in a compact subset $K_i \subset W_{\alpha_i}$.
- Integration of functions on a compact k-dimensional submanifold M with boundary (not necessarily oriented) with atlas A: With a partition of unity h_1, \ldots, h_N as above, and motivated by (*), (**) we define

$$\int_{\boldsymbol{M}} f = \sum_{i=1}^{N} \int_{U_{\alpha_i}} h_i \circ \varphi_{\alpha_i} f \circ \varphi_{\alpha_i} \sqrt{\det((D\varphi_{\alpha_i})^{\mathrm{T}} D\varphi_{\alpha_i})}.$$

- Lemma: This is independent of the particular choice of the choice of partition of unity.
- The k-volume of M (k-vol(M), M as above) is defined to be $\int_M 1$ (i.e. $\int_M f$ in the special case when $f \equiv 1$).
- Integration of *k*-forms on a compact oriented *k*-dimensional manifold *M* oriented by the atlas *A*: With a partition of unity *h*₁,...,*h*_N as above, and motivated by (‡), (‡‡) we define ∫_M ω = Σ^N_{i=1} ∫_{Uαi} φ^{*}_{αi}(*h_i*ω).
- Lemma: This is independent of the particular choice of the choice of partition of unity.
- Stokes Thm: *M* is a compact oriented *k*-dim C^2 manifold-with-boundary in \mathbb{R}^n and ∂M is oriented by $\begin{cases} \{\widetilde{\varphi}_{\alpha}\}_{\alpha \in \Lambda_{bdry}} & \text{if } k \text{ is even} \\ \{\widehat{\varphi}_{\alpha}\}_{\alpha \in \Lambda_{bdry}} & \text{if } k \text{ is odd}, \widehat{\varphi}_{\alpha}(x_1, \cdots, x_{k-1}) = \widetilde{\varphi}_{\alpha}(-x_1, x_2, \cdots, x_{k-1}). \end{cases}$ Then $\int_M d\omega = \int_{\partial M} \omega$ for any C^1 (k-1)-form ω defined on an open $V \supset M$.
- Volume form $v = \sum_{I \in \mathcal{I}_{k,n}} b_I dx_I$ is the *k*-form on *M* (assuming *M* oriented) which is defined on $M \cap W_{\alpha}$ by

$$b_{I} = \frac{(\det D\varphi_{\alpha I}) \circ \varphi_{\alpha}^{-1}}{\sqrt{(\det((D\varphi_{\alpha})^{\mathrm{T}} D\varphi_{\alpha})) \circ \varphi_{\alpha}^{-1}}}, \quad I \in \mathcal{I}_{k,n},$$

and this expression is independent of α (i.e. we get the same result on $M \cap W_{\alpha} \cap W_{\beta}$ if we use the chart φ_{β} in the definition instead of φ_{α}).

- Proof that v has "length 1" in the sense that $\sum_{I \in \mathcal{I}_{k,n}} b_I^2 \equiv 1$ on M.
- (Connection between integration of functions and integration of forms.) Let M be a compact oriented k-dimensional C^1 submanifold with boundary (possibly with $\partial M = \emptyset$) and v the volume form of M. Then for any C^0 k-form ω on M, $\int_M \omega = \int_M \langle \omega, v \rangle$, where $\langle \omega, v \rangle$ is the

inner product defined to be $\sum_{I \in \mathcal{I}_{k,n}} a_I b_I$ in case $\omega = \sum_{I \in \mathcal{I}_{k,n}} a_I dx_I$ and $\upsilon = \sum_{I \in \mathcal{I}_{k,n}} b_I dx_I$. In particular (since $\langle \upsilon, \upsilon \rangle = \sum_{I \in \mathcal{I}_{k,n}} b_I^2 \equiv 1$) we have $\int_M \upsilon = \int_M \langle \upsilon, \upsilon \rangle = \int_M 1 = k$ -vol(M) (which explains why υ is called the volume form).

- When k = n 1: *M* is compact oriented with volume form $v = \sum_{j=1}^{n} b_j dx_1 \wedge \cdots dx_{j-1} \wedge dx_{j+1} \wedge \cdots dx_n \Rightarrow v = \sum_{j=1}^{n} (-1)^{j-1} b_j \underline{e}_j$ is a continuous unit normal for *M*.
- When k = n, $D\varphi_{\alpha}$ is an $n \times n$ matrix, so det $D\varphi_{\alpha}$ makes sense and is non-zero, so WLOG we can assume it is positive in U_{α} (otherwise replace it by $\varphi_{\alpha} \circ R$ where R is the reflection $(x_1, \ldots, x_n) \mapsto (-x_1, x_2, \ldots, x_n)$), in which case the atlas automatically orients M (since $\varphi_{\alpha\beta} = \varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ then has Jacobian matrix of positive determinant). Also, in this case k = n, $V = M \setminus \partial M$ is open subset of \mathbb{R}^n and $\partial V = \partial M$ (see hw10, Q.4). In this case Stokes theorem (applied to the (n-1)-form $\omega = \sum_{i=1}^{n} (-1)^{i-1} a_i dx_i$, where a_j are C^1 in an open $U \supset V \cup \partial V$), implies the "divergence theorem" that

$$\int_V \operatorname{div} \underline{a} = \int_{\partial V} \underline{a} \cdot \nu,$$

where $\underline{a} = (a_1, \ldots, a_n)^T$, div $\underline{a} = \sum_{j=1}^n D_j a_j$ and ν is the unit normal of $\partial V (= \partial M)$ pointing out of V.

• When k = 2, n = 3, Stokes Theorem (applied to the 1-form $\sum_{j=1}^{n} a_j dx_j$) gives

$$\int_{M} (\nabla \times \underline{a}) \cdot \nu = \int_{\partial M} \tau \cdot \underline{a} \, ds,$$

where *s* is the arc-length parameter on ∂M , $\nabla \times \underline{a} = (D_2 a_3 - D_3 a_2, D_3 a_1 - D_1 a_3, D_1 a_2 - D_2 a_1)^T$, ν is the unit normal of *M*, and τ is the unit tangent of ∂M , oriented so that $\nu = \tau \times \gamma$, where at each point $q \in \partial M$, $\gamma|_q$ is the unit vector in $T_q M$ which is normal to τ and points into *M*. (Q.2 of hw10.)

• Applications of Stokes Theorem, including proofs of the fundamental theorem of algebra and the Brouwer fixed point theorem.