Mathematics Department Stanford University Summary of Math 52H Material, 2009

Note: In some cases here only abbreviations of formal definitions and statements of theorems are given, and in that case a correct statement would require additional detail; All such additional detail and proofs should be known.

Riemann Integral, Volume

See http://www.stanford.edu/class/math52h/supplements/transformation.pdf

- Volume zero: A set A has volume zero (or "content zero") if $\forall \varepsilon>0, \exists$ a finite collection R_{1}, \cdots, R_{N} of rectangles with $A \subset \bigcup_{j=1}^{N} R_{j}$ and $\sum_{j=1}^{N}\left|R_{j}\right|<\varepsilon$.
- Lemma: A has volume zero if and only for each $\varepsilon>0$ there is a finite collection of balls with $B_{\rho_{j}}\left(\underline{x}_{j}\right), j=1, \ldots, Q$ such that $A \subset \cup_{j=1}^{Q} B_{\rho_{j}}\left(\underline{x}_{j}\right)$ and $\sum_{j=1}^{Q} \rho_{j}^{n}<\varepsilon$.
- Boundary of a set: $\partial A=\left\{\underline{x} \in \mathbb{R}^{n}: B_{\rho}(\underline{x}) \cap A \neq \varnothing\right.$ and $\left.B_{\rho}(\underline{x}) \cap\left(\mathbb{R}^{n} \backslash A\right) \neq \varnothing \forall \rho>0\right\}$. Various properties of the boundary including (i) ∂A is closed, (ii) $\partial(A \cup B) \subset \partial A \cup \partial B$, (iii) $\partial(A \cap B) \subset \partial A \cup \partial B$, and (iv) the "segment property" that if $\underline{x} \in A$ and $\underline{y} \in \mathbb{R}^{n} \backslash A$, then there is $t \in[0,1]$ with $t \underline{x}+(1-t) \underline{y} \in \partial A$ (which implies in particular that $\partial A \neq \varnothing$ unless $A=\varnothing$ or $A=\mathbb{R}^{n}$).
- Riemann integrals: Upper sum $U=\sum_{I \in \mathcal{P}}\left(\sup _{I} f\right)|I|$ for $f: R \rightarrow \mathbb{R}$ bounded, where $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ and \mathcal{P} a partition of R. Lower sum is same with $\inf _{I} f$ in place of $\sup _{I} f$. Theorem that $L(f, \mathcal{P}) \leq U(f, \mathcal{Q})$ for every choice of partitions \mathcal{P}, \mathcal{Q}. Definition that f is Riemann integrable if $\sup _{\mathcal{P}} L(f, \mathcal{P})=\inf _{\mathcal{P}} U(f, \mathcal{P})$.
- Riemann Criterion: A bounded $f: R \rightarrow \mathbb{R}$ is Riemann integrable $\Longleftrightarrow \forall \varepsilon>0, \exists$ a partition \mathcal{P} s.t. $U(f, \mathcal{P})<L(f, \mathcal{P})+\varepsilon$, and in this case we have $U(f, \mathcal{P})-\varepsilon<\int_{R} f<L(f, \mathcal{P})+\varepsilon$.
- Theorem that a continuous function $f: R \rightarrow \mathbb{R}$ is Riemann integrable.
- Theorem that if $S \subset R$ has volume zero and if $f: R \rightarrow \mathbb{R}$ is bounded and is continuous at each point of $R \backslash S$, then f is Riemann integrable. Also if $g: R \rightarrow \mathbb{R}$ is bounded and $f|R \backslash S=g| R \backslash S$, then g is also Riemann integrable and $\int_{R} f=\int_{R} g$.
- Volume: the definition $\operatorname{vol}(\Omega)=\int_{R} \chi_{\Omega}$, where χ_{Ω} is the indicator function of Ω (and $\operatorname{vol}(\Omega)$ exists precisely when χ_{Ω} is Riemann integrable on a rectangle $R \supset \Omega$).
- Fact that $\operatorname{vol}(\Omega)$ exists \Longleftrightarrow for each $\varepsilon>0$ there is a partition \mathcal{P} of the rectangle $R \supset \Omega$ with $\sum_{I \in \mathcal{P}, I \cap \Omega \neq \varnothing}|I|-\sum_{I \in \mathcal{P}, I \subset \Omega}|I|<\varepsilon$ and corresponding theorem that $\operatorname{vol}(\Omega)$ exists (i.e. $\chi \Omega$ is Riemann integrable) $\Longleftrightarrow \operatorname{vol}(\partial \Omega)=0$.
- Fubini's Thm: $R=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right], f: R \rightarrow \mathbb{R}$ bounded \Rightarrow

$$
\int_{R} f=\int_{\left[a_{n}, b_{n}\right]}\left(\int_{\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n-1}, b_{n-1}\right]} f\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) d x_{1} \cdots d x_{n-1}\right) d x_{n}
$$

provided all three integrals exist (O.K. if e.g. f is continuous on R).

- Linear Transformation of Volume Thm: If Ω is bounded and if $\operatorname{vol}(\partial \Omega)=0$ then, for any $n \times n$ matrix $A, \operatorname{vol}(A \Omega)$ exists and $\operatorname{vol}(A \Omega)=|\operatorname{det} A| \operatorname{vol}(\Omega)$.
- Rough Volume Inequality: f Lipschitz $(\|f(x)-f(y)\| \leq L\|x-y\| \forall x, y \in \Omega) \Rightarrow \operatorname{vol}(f(\Omega)) \leq$ $L^{n} \operatorname{vol}(\Omega)$, provided the volumes exist.
- Change of Variables Formula: U is open in $\mathbb{R}^{n}, f: U \rightarrow \mathbb{R}^{n} 1: 1, C^{1}$, $\operatorname{det} D f \neq 0 \forall x \in U$, Ω bounded, and $U \supset \Omega \cup \partial \Omega \Rightarrow \operatorname{vol}(f(\Omega))$ exists and $\int_{f(\Omega)} g=\int_{\Omega} g \circ f|\operatorname{det} D f|$ for any bounded continuous $g: f(\Omega) \rightarrow \mathbb{R}$. Important special case: transformation of volume
formula $\operatorname{vol}(f(\Omega))=\int_{\Omega}|\operatorname{det} D f|$, which corresponds to the choice $g \equiv 1$ in the change of variables formula.
- Alternate version of change of variables formula as on p. 7 of supplement http://www. stanford. edu/class/math52h/supplements/transformation.pdf.
- Applications of the Change of Variables Formula, including Polar and Spherical Coordinates on various domains.

Real Analysis (Real Analysis Lectures 7,8,9)

- Theorem that $\mathrm{AC} \Rightarrow$ convergence for complex series.
- Cauchy Product Thm: $\sum_{n=0}^{\infty} a_{n}, \sum_{n=0}^{\infty} b_{n} \mathrm{AC} \Rightarrow \sum_{n=0}^{\infty} c_{n} \mathrm{AC}$ and $\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=$ $\sum_{n=0}^{\infty} c_{n}$ where $c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}$ for each n.
- General vector spaces $V-8$ vector space axioms and examples of such spaces.
- Inner product and properties: $\langle v, w\rangle=\langle w, v\rangle,\langle v, w\rangle$ is linear in both v and w and $\langle v, v\rangle>0$ unless $v=0$. Definition $\|v\|=\sqrt{\langle v, v\rangle}$.
- Bessel's Inequality: $\sum_{n=1}^{\infty} c_{n}^{2} \leq\|v\|^{2}$.
- If f is 2π-periodic and piecewise continuous and both one-sided derivatives $\lim _{h \downarrow 0} \frac{f(x+h)-f\left(x_{+}\right)}{h}$ and $\lim _{h \downarrow 0} \frac{f(x-h)-f(x-)}{h}$ exist at a point x, then the trigonometric Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

converges to $f(x)$ at that x, assuming we take $f(x)=\frac{1}{2}\left(f\left(x_{+}\right)+f\left(x_{-}\right)\right)$in case f is not continuous at x.

Differential Forms

- A 1-linear function from $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is $\ell(\underline{v})=\sum_{j=1}^{n} a_{j} v_{j}$. Special example $d x_{j}(\underline{v})=v_{j}$; then any 1 -linear ℓ can be written $\ell=\sum_{j=1}^{n} a_{j} d x_{j}$.
- A 1-form on U is a map $U \rightarrow\left\{1\right.$-linear functions on $\left.\mathbb{R}^{n}\right\}$. Thus $\left.\omega\right|_{\underline{x}}=\sum_{j=1}^{n} a_{j}(\underline{x}) d x_{j}$ where a_{j} are given functions of \underline{x} on $U . \omega$ is C^{N} on U means each a_{j} is C^{N}. Important special case: if $f: U \rightarrow \mathbb{R}$ is C^{1} then the differential $d f$ of f, defined by $d f=\sum_{j=1}^{n} D_{j} f d x_{j}$, is a 1-form on U.
- ℓ is a k-multilinear function (abbreviated k-linear here) on \mathbb{R}^{n} if $\ell: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}(k$ factors) $\rightarrow \mathbb{R}$ is linear in each factor (thus $\ell\left(\alpha \underline{v}+\beta \underline{w}, \underline{v}_{2}, \ldots, \underline{v}_{k}\right)=\alpha \ell\left(\underline{v}^{\prime}, \underline{v}_{2}, \ldots, \underline{v}_{k}\right)+\beta \ell\left(\underline{w}_{,} \underline{v}_{2}, \ldots, \underline{v}_{k}\right)$, with a similar identity for each of the other entries).
- A k-linear function ℓ is alternating if $\ell\left(\underline{v}_{1}, \ldots, \underline{v}_{i}, \ldots, \underline{v}_{j}, \ldots, \underline{v}_{k}\right)=-\ell\left(\underline{v}_{1}, \ldots, \underline{v}_{j}, \ldots, \underline{v}_{i}, \ldots, \underline{v}_{k}\right)$ for $i \neq j$. (i.e., interchanging two entries changes the sign).
- The definition $d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\left(\underline{v}_{1}, \ldots, \underline{v}_{k}\right)=\operatorname{det}\left(\begin{array}{ccc}v_{1 i_{1}} & \cdots & v_{k i_{1}} \\ \vdots & \vdots & \vdots \\ v_{1 i_{k}} & \cdots & v_{k i_{k}}\end{array}\right)$ for any k-tuple $\left(i_{1}, \ldots, i_{k}\right)$ of integers $\in\{1, \ldots, n\}$.
- Standard Form Lemma: Any alternating k-linear function $\ell: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}$ (k factors) $\rightarrow \mathbb{R}$ can be written $\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} a_{i_{1} \cdots i_{k}} d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ where $a_{i_{1} \cdots i_{k}} \in \mathbb{R}$ are unique, given by $a_{i_{1} \cdots i_{k}}=\ell\left(\underline{e}_{i_{1}}, \cdots, \underline{e}_{i_{k}}\right)$. (And so the alternating k-linear functions on \mathbb{R}^{n} are a vector space of dimension $\binom{n}{k}$ with basis $\left\{d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}$.)
- A k-form on a set $U \subset \mathbb{R}^{n}$ is a map $U \rightarrow$ \{alternating k -linear functions $\}$. Thus $\left.\omega\right|_{\underline{x}}=$ $\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} a_{i_{1} \cdots i_{k}}(\underline{x}) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$ for some choice of real-valued functions $a_{i_{1}, \ldots, i_{k}}$ on U.
- More notation: $\mathcal{I}_{k, n} \equiv\left\{\left(i_{1}, \cdots, i_{k}\right): 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}, I=\left(i_{1}, \cdots, i_{k}\right) \in \mathcal{I}_{k, n}$, so any k-form ω can be written $\omega=\sum_{I \in \mathcal{I}_{k, n}} a_{I} d x_{I}$, where $d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}$.
- Definition of wedge product of a k-form and an ℓ-form: $\omega=\sum_{I \in \mathcal{I}_{k, n}} a_{I} d x_{I}, \eta=\sum_{J \in \mathcal{I}_{l, n}} b_{J} d x_{J}$, then $\omega \wedge \eta=\sum_{I \in \mathcal{I}_{k, n}, J \in \mathcal{I}_{l, n}} a_{I} b_{J} d x_{I, J}$ where $I, J=\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{\ell}\right)$. The wedge product is associative, and it is linear in each factor, $\omega \wedge \eta=(-1)^{k \ell} \eta \wedge \omega$.
- Exterior Derivative: If ω is a $C^{1} k$-form on U then $d \omega=\sum_{I \in \mathcal{I}_{k, n}} d a_{I} \wedge d x_{I}=$ $\sum_{I \in \mathcal{I}_{k, n}, j \in\{1, \cdots, n\}}\left(D_{j} a_{I}(\underline{x})\right) d x_{j} \wedge d x_{I}$. Thus $d \omega$ is a $(k+1)$-form on U (zero if $k \geq n$).
- Properties of exterior derivative: (i) (linear) $d\left(\lambda \omega_{1}+\mu \omega_{2}\right)=\lambda d \omega_{1}+\mu d \omega_{2}$, (ii) $d(f \omega)=$ $d f \wedge \omega+f d \omega$, (iii) $d(\omega \wedge \eta)=(d \omega) \wedge \eta+(-1)^{k} \omega \wedge d \eta$, (iv) $d(d \omega)=0$ if ω is a $C^{2} k$-form, for $\omega, \omega_{1}, \omega_{2}$ a $C^{1} k$-forms on U, η a $C^{1} \ell$-form on U and f a C^{1} function on U. (Note that these also apply to the case $k=0$-a zero C^{j} form is just a C^{j} function).
- Pullback $f^{*} \omega$: If $f: U \rightarrow V$ is C^{1} where $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{m}$ are open, and if $\omega=$ $\sum_{I \in \mathcal{I}_{k, m}} a_{I} d x_{I}$ is a k-form in V, then for $\underline{x} \in U$ we define $\left.f^{*} \omega\right|_{\underline{x}}=\left.\sum_{I \in \mathcal{I}_{k, m}} a_{I}(f(\underline{x})) d f_{I}\right|_{\underline{x}}$ (where $d f_{I}=d f_{i_{1}} \wedge \cdots \wedge d f_{i_{k}}$) $=\left.\left.\sum_{I \in \mathcal{I}_{k, m}, J \in \mathcal{I}_{k, n}} a_{I} \circ f\right|_{\underline{x}} \operatorname{det}\left(D_{J} f_{I}\right)\right|_{\underline{x}} d x_{J}$, which is a k form on U.
- Basic properties of pullback: (i) (linear) $f^{*}\left(\lambda \omega_{1}+\mu \omega_{2}\right)=\lambda f^{*} \omega_{1}+\mu f^{*} \omega_{2}$, (ii) $f^{*}(h \omega)=$ $h \circ f f^{*} \omega$, (iii) $f^{*}(\omega \wedge \eta)=\left(f^{*} \omega\right) \wedge\left(f^{*} \eta\right)$, (iv) $(f \circ g)^{*} \omega=g^{*}\left(f^{*} \omega\right)$,
- Pullback and exterior derivative commute: $d f^{*} \omega=f^{*} d \omega$ assuming $f: U \rightarrow V$ is C^{2} and ω is a $C^{1} k$-form on V.
- If $\omega=a d x_{1} \wedge \cdots \wedge d x_{n}$ on an open $U \subset \Omega \cup \partial \Omega$ with Ω bounded and $\partial \Omega$ having volume zero, and if a continuous on $\Omega \cup \partial \Omega$, then we define $\int_{\Omega} \omega=\int_{\Omega} a$. Observe that (using definition of pullback) we then have $\int_{\Omega} f^{*} \omega=\int_{\Omega}(a \circ f)$ det $D f$ assuming $f: U \rightarrow V$ is C^{1}, U, V open in $\mathbb{R}^{n}, \omega=$ is a continuous n-form on V, and $U \supset \Omega \cup \partial \Omega$. With this notation, assuming f is in addition 1:1 and det $D f \neq 0$, the change of variables formula can be written $\int_{f(\Omega)} \omega= \pm \int_{\Omega} f^{*} \omega$, with " + " if $\operatorname{det} D f>0$ in Ω and " - " if $\operatorname{det} D f<0$ in Ω

Line integrals

- Line Integral: $\gamma:[a, b] \rightarrow U$ is C^{1}, U open in $\mathbb{R}^{n} ; \gamma$ need not be $1: 1$, nor do we need $\gamma^{\prime} \neq 0$. Definition: If ω is a continuous 1-form on U, then we define $\int_{\gamma} \omega=\int_{[a, b]} \gamma^{*} \omega(\equiv$ $\left.\int_{a}^{b} \underline{a}(\gamma(t)) \cdot \gamma^{\prime}(t) d t\right)$, which is independent of parameterization, in the sense that if $\gamma=\beta \circ \varphi$, where $\beta:[c, d] \rightarrow U$ and $\varphi:[a, b] \rightarrow \mathbb{R}$ with $\beta, \varphi C^{1}, \varphi^{\prime}>0$ and $\varphi([a, b])=[c, d]$, then $\int_{\gamma} \omega=\int_{\beta} \omega$. (Proof via change of variables formula from 1-variable calculus.)
- Fundamental Thm of Calc for Line Integrals: If $\gamma:[a, b] \rightarrow U$ is continuous and piecewise C^{1} and f is C^{1} on U, then $\int_{\gamma} d f=f(\gamma(b))-f(\gamma(a))$; note the path independence.
- U open, ωC^{0} on $U \Rightarrow$ The following are equivalent:
- ω is exact in U (i.e. $\omega=d f$ for some $C^{1} f: U \rightarrow \mathbb{R}$)
- $\int_{\gamma} \omega$ is path independent in U (i.e. $\int_{\gamma} \omega=\int_{\tilde{\gamma}} \omega$ whenever $\gamma(a)=\widetilde{\gamma}(c)$ and $\gamma(b)=\widetilde{\gamma}(d)$ and $\gamma:[a, b] \rightarrow U, \widetilde{\gamma}:[c, d] \rightarrow U$ are both piecewise C^{1} curves in U.)
- Definition of simply connected domain (U is simply connected if any for C^{1} curve $\gamma:[a, b] \rightarrow$ U with $\gamma(a)=\gamma(b)$ there is a C^{1} map $h:[a, b] \times[0,1] \rightarrow U$ with $h(t, 0) \equiv \gamma(t), h(t, 1) \equiv \underline{y}$ for some $y \in U$, and $h(a, s)=h(b, s) \forall s \in[0,1])$.) Proof (using Stokes Thm on a rectangle) that if U is simply connected then ω a closed (i.e. $d \omega=0$) $C^{1} 1$-form on $U \Rightarrow \omega$ exact (i.e. $\omega=d f$ for some C^{2} function $f: U \rightarrow \mathbb{R}$).
- k-vol of k-dim parallelepiped $P \subset \mathbb{R}^{n}: P$ spanned by $\underline{a}_{1}, \cdots, \underline{a}_{k}$ (i.e. $P=\left\{\sum_{j=1}^{k} t_{j} \underline{a}_{j}\right.$: $\left.\left.t_{1}, \ldots, t_{k} \in[0,1]\right\}\right) \Rightarrow k-\operatorname{vol}(P)=\sqrt{\operatorname{det} A^{\mathrm{T}} A}$, where A is the $n \times k$ matrix with columns equal to the given vectors $\underline{a}_{1}, \ldots, \underline{a}_{k}$.

Submanifolds

http://www.stanford.edu/class/math52h/supplements/submanifold-09.pdf

- Formal definition: M is a k-dimensional C^{1} submanifold in \mathbb{R}^{n} if there is a family of $1: 1$ C^{1} maps $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ with each W_{α} open in \mathbb{R}^{n} and $M \subset \cup_{\alpha \in \Lambda} W_{\alpha}$, and where for each $\alpha \in \Lambda$ (Λ is an index set) we have U_{α} open in $\mathbb{R}^{k}, D_{1} \varphi_{\alpha}(\underline{x}), \ldots, D_{k} \varphi_{\alpha}(\underline{x})$ are l.i. for each $\underline{x} \in U_{\alpha}, \varphi_{\alpha}\left(U_{\alpha}\right)=M \cap W_{\alpha}$, and $\varphi_{\alpha}^{-1}: M \cap W_{\alpha} \rightarrow U_{\alpha}$ is continuous. The φ_{α} are called "local coordinate charts" for M and the entire collection $\mathcal{A}=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ is called an atlas for M.
- The fact that the above definition is equivalent to the "local graph" definition used in Math 51 H .
- Fact (using inverse function theorem) that φ_{α}^{-1} is the restriction of a C^{1} function (defined in an open set) to $M \cap W_{\alpha}$ (see p. 2 of lecture supplement on submanifolds), and hence in particular that the transition maps are C^{1}.
- If $\varphi_{\alpha}\left(U_{\alpha}\right) \cap \varphi_{\beta}\left(U_{\beta}\right) \neq \varnothing$ (i.e. $\left.M \cap W_{\alpha} \cap W_{\beta} \neq \varnothing\right)$, then $U_{\alpha \beta}=\varphi_{\alpha}^{-1}\left(M \cap W_{\alpha} \cap W_{\beta}\right)$ will be non-empty and we can define $\varphi_{\alpha \beta}=\varphi_{\beta}^{-1} \circ \varphi_{\alpha}: U_{\alpha \beta} \rightarrow U_{\beta \alpha}$; this is C^{1} because (see above) φ_{β}^{-1} is the restriction to $M \cap W_{\beta}$ of a C^{1} function. The $\varphi_{\alpha \beta}$ so defined are called "transition maps."
- Important special case: When there is just one coordinate chart $\varphi: U \rightarrow W$ (i.e. the atlas has just 1 element), so $M=\varphi(U)$. In this case we sometimes refer to M as a " k dimensional parametrized surface."
- As discussed in lecture (using an informal argument based on the fact that a $C^{1} \operatorname{map} \varphi$ is well approximated near a point \underline{x}_{0} by the affine function $\left.\varphi\left(\underline{x}_{0}\right)+D \varphi\left(\underline{x}_{0}\right)\left(\underline{x}-\underline{x}_{0}\right)\right)$ the above expression for the k-volume of a k-dimensional parallelepiped leads naturally to the following definition:
Definition of integration of a function over a k-dimensional parametrized surface): Let $\varphi: U \rightarrow \mathbb{R}^{n}$ and $\Omega \subset U$ be as above and let f be a continuous real-valued function on Ω. Then we define

$$
\begin{equation*}
\int_{\varphi(\Omega)} f=\int_{\Omega} f \circ \varphi \sqrt{\operatorname{det}\left((D \varphi)^{\mathrm{T}} D \varphi\right)} . \tag{*}
\end{equation*}
$$

Remark (\boldsymbol{k}-volume of a \boldsymbol{k}-dimensional parametrized surface): Notice an important special case of the above definition occurs when we take $f \equiv 1$ in which case the left side is defined to be the k-volume of $f(\Omega)($ i.e. $k-\operatorname{vol}(f(\Omega))$); thus

$$
k-\operatorname{vol}(\varphi(\Omega))=\int_{\Omega} \sqrt{\operatorname{det}\left((D \varphi)^{\mathrm{T}} D \varphi\right)} .
$$

- The fact that the above definition is independent of which map φ we use: i.e. if $\widetilde{\varphi}: \widetilde{U} \rightarrow \mathbb{R}^{n}$ is a $1: 1 C^{1}$ map with $D_{1} \widetilde{\varphi}(\underline{x}), \ldots, D_{k} \widetilde{\varphi}(\underline{x})$ l.i. at each $\underline{x} \in \Omega$ and if $\widetilde{\varphi}(\widetilde{U})=\varphi(U)$ then

$$
\begin{equation*}
\int_{\Omega} f \circ \varphi \sqrt{\operatorname{det}\left((D \varphi)^{\mathrm{T}} D \varphi\right)}=\int_{\tilde{\Omega}} f \circ \widetilde{\varphi} \sqrt{\operatorname{det}\left((D \widetilde{\varphi})^{\mathrm{T}} D \widetilde{\varphi}\right)} \tag{**}
\end{equation*}
$$

with $\widetilde{\Omega}=\widetilde{\varphi}^{-1}(\varphi(\Omega))$. Notice that an extremely important example of occurs when we have two coordinate charts $\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}, \varphi_{\beta}: U_{\beta} \rightarrow W_{\beta}$ of a submanifold M with $M \cap W_{\alpha} \cap W_{\beta} \neq$ \varnothing; in that case we do indeed have exactly the above with $\varphi=\varphi_{\alpha}\left|U_{\alpha \beta}, \widetilde{\varphi}=\varphi_{\beta}\right| U_{\beta \alpha}, U=U_{\alpha \beta}$, $\widetilde{U}=U_{\beta \alpha}$, and note that in this case ψ is the transition map $\varphi_{\alpha \beta}=\varphi_{\beta}^{-1} \circ \varphi_{\alpha}: U_{\alpha \beta} \rightarrow U_{\beta \alpha}$.

- Definition of integration of a \boldsymbol{k}-form over a \boldsymbol{k}-dimensional parametrized surface:

$$
\int_{\varphi(\Omega)} \omega=\int_{\Omega} \varphi^{*} \omega
$$

- The fact that (with $\widetilde{\varphi}: \widetilde{U} \rightarrow \mathbb{R}^{n}$ as in (**))

$$
\int_{\Omega} \varphi^{*} \omega= \pm \int_{\tilde{\Omega}} \widetilde{\varphi}^{*} \omega .
$$

with \pm according as the "transition map" $\psi=\widetilde{\varphi}^{-1} \circ \varphi$ (which enables us to switch between the representations φ and $\widetilde{\varphi}$ because $\varphi=\widetilde{\varphi} \circ \psi$) is orientation preserving or reversing.

- Formal definition: M is a k-dimensional C^{1} submanifold-with-boundary in \mathbb{R}^{n} if there is a family of 1:1 C^{1} maps $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ with each W_{α} open in \mathbb{R}^{n} and $M \subset \cup_{\alpha \in \Lambda} W_{\alpha}$, and where for each $\alpha \in \Lambda$ (Λ is an index set) we have $D_{1} \varphi_{\alpha}(\underline{x}), \ldots, D_{k} \varphi_{\alpha}(\underline{x})$ are l.i. for each $\underline{x} \in U_{\alpha}, \varphi_{\alpha}\left(U_{\alpha}\right)=M \cap W_{\alpha}$, and $\varphi_{\alpha}^{-1}: M \cap W_{\alpha} \rightarrow U_{\alpha}$ is continuous, and for the set U_{α} there are 2 possibilities:
either (a) U_{α} is open in \mathbb{R}^{k} or (b) $U_{\alpha}=V_{\alpha} \cap \mathbb{R}_{+}^{k}$ where V_{α} is open in \mathbb{R}^{k} and $\mathbb{R}_{+}^{k}=\left\{\underline{x} \in \mathbb{R}^{k}\right.$: $\left.x_{k} \geq 0\right\}$ and $V_{\alpha} \cap\left(\mathbb{R}^{k-1} \times\{0\}\right) \neq \varnothing$. In case (a) we call φ_{α} an "interior coordinate chart" and in case (b) we call φ_{α} a boundary coordinate chart. We also write $\Lambda=\Lambda_{\text {int }} \cup \Lambda_{\text {bdry }}$, where $\alpha \in \Lambda_{\text {int }}$ if φ_{α} is an interior coordinate chart, and $\alpha \in \Lambda_{\text {bdry }}$ if φ_{α} is a boundary coordinate chart.
- Definition: $\partial M=$ boundary of $M=\cup_{\alpha \in \Lambda_{\text {bdry }}} \varphi_{\alpha}\left(U_{\alpha} \cap\left(\mathbb{R}^{k-1} \times\{0\}\right)\right.$ and the fact that $\partial M \neq$ $\varnothing \Rightarrow \partial M$ is a $(k-1)$-dimensional C^{1} submanifold without boundary.
- Lemma: ∂M is either empty (called manifold-without-boundary) or is a ($k-1$)-dimensional manifold-with-boundary with atlas $\left\{\widetilde{\varphi}_{\alpha}: \widetilde{U}_{\alpha} \rightarrow \mathbb{R}^{n}\right\}_{\alpha \in \Lambda_{\text {bdry }}}$ where $\widetilde{U}_{\alpha}=\left\{\underline{x} \in \mathbb{R}^{k-1}:[\underline{x}, 0] \in\right.$ $\left.U_{\alpha} \cap\left(\mathbb{R}^{k-1} \times\{0\}\right)\right\}$ and $\widetilde{\varphi}_{\alpha}=\varphi_{\alpha}[x, 0], x \in \widetilde{U}_{\alpha} .\left\{\widetilde{\varphi}_{\alpha}: \widetilde{U}_{\alpha} \rightarrow \mathbb{R}^{n}\right\}$ orients ∂M if $\left\{\varphi_{\alpha}: U_{\alpha}\right\}_{\alpha \in \Lambda}$ orients M.
- Lemma: $M \backslash \partial M$ is relatively open in M; that is, there is an open set $W \subset \mathbb{R}^{n}$ such that $M \backslash \partial M=M \cap W$. (Q. 6 of hw8.)
- As in the case of C^{1} manifolds without boundary we again have C^{1} transition maps $\varphi_{\alpha \beta}=$ $\beta^{-1} \circ \varphi_{\alpha}: U_{\alpha \beta} \rightarrow U_{\beta \alpha}$.
- For $q \in M$, the tangent space of M at q is defined by $T_{q} M=\left\{\gamma^{\prime}(0): \gamma:[0, \delta) \rightarrow\right.$ \mathbb{R}^{n} is C^{1} for some $\delta>0$, and $\gamma[0, \delta) \subset M$ with $\left.\gamma(0)=q\right\}$.
- Lemma: If $q \in M \backslash \partial M, T_{q} M$ is a k-dimensional subspace of \mathbb{R}^{n} and in fact is given explicitly as $\operatorname{span}\left\{D_{1} \varphi_{\alpha}(\underline{p}), \ldots, D_{k} \varphi_{\alpha}(p)\right\}$ for any coordinate chart $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ with $q \in \varphi_{\alpha}\left(U_{\alpha}\right)$ and any $p \in U_{\alpha}$ with $\varphi_{\alpha}(p)=q$. If $q \in \partial M, T_{q} M$ is a k-dimensional half-space of \mathbb{R}^{n} and given explicitly as $\left\{\sum_{j=1}^{k} c_{j} D_{j} \varphi_{\alpha}(\underline{p}): c_{1}, \ldots, c_{k-1} \in \mathbb{R}, c_{k} \geq 0\right\}$ for any coordinate chart $\varphi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$ with $\alpha \in \Lambda_{\text {bdry }}$ and any $p \in U_{\alpha}$ with $\varphi_{\alpha}(p)=q$ for some $p \in U_{\alpha} \cap \mathbb{R}^{k-1} \times\{0\}$.
- Definition: An atlas $\mathcal{A}=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ is an orienting atlas for M ("provides an orientation for M ") if det $D \varphi_{\alpha \beta}>0 \forall \alpha, \beta \in \Lambda$ such $\varphi_{\alpha \beta}$ is defined (i.e. for all $\alpha, \beta \in \Lambda$ such that $\left.M \cap W_{\alpha} \cap W_{\beta} \neq \varnothing\right)$.
- The fact that $\mathcal{A}=\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ is an orienting atlas for M and $\partial M \neq \varnothing \Rightarrow \widetilde{\mathcal{A}}=\left\{\widetilde{\varphi}_{\alpha}\right.$: $\left.\widetilde{U}_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda_{\text {bdry }}}$ is an orienting atlas for ∂M, where $\widetilde{U}_{\alpha}=\left\{\underline{x}:[\underline{x}, 0] \in U_{\alpha} \cap\left(R^{k-1} \times\{0\}\right)\right\}$ and $\widetilde{\varphi}_{\alpha}(\underline{x})=\varphi_{\alpha}[\underline{x}, 0]\left([\underline{x}, 0]=\left(x_{1}, \ldots, x_{k-1}, 0\right)^{\mathrm{T}}\right)$.
- Partition of Unity: Given a compact $C^{1} k$-dimensional manifold M in \mathbb{R}^{n} with atlas $\mathcal{A}=$ $\left\{\varphi_{\alpha}: U_{\alpha} \rightarrow W_{\alpha}\right\}_{\alpha \in \Lambda}$ we can select finitely many non-negative C^{∞} functions h_{1}, \ldots, h_{N} : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\sum_{i=1}^{N} h_{i} \equiv 1$ on some open $W \supset M$ and for each $i=1, \ldots, N$ there is $\alpha_{i} \in \Lambda$ with $\left\{\underline{x}: h_{i}(\underline{x}) \neq 0\right\}$ contained in a compact subset $K_{i} \subset W_{\alpha_{i}}$.
- Integration of functions on a compact k-dimensional submanifold M with boundary (not necessarily oriented) with atlas \mathcal{A} : With a partition of unity h_{1}, \ldots, h_{N} as above, and motivated by $(*),(* *)$ we define

$$
\int_{M} f=\sum_{i=1}^{N} \int_{U_{\alpha_{i}}} h_{i} \circ \varphi_{\alpha_{i}} f \circ \varphi_{\alpha_{i}} \sqrt{\operatorname{det}\left(\left(D \varphi_{\alpha_{i}}\right)^{\mathrm{T}} D \varphi_{\alpha_{i}}\right)} .
$$

- Lemma: This is independent of the particular choice of the choice of partition of unity.
- The k-volume of $M\left(k-\operatorname{vol}(M), M\right.$ as above) is defined to be $\int_{M} 1$ (i.e. $\int_{M} f$ in the special case when $f \equiv 1$).
- Integration of k-forms on a compact oriented k-dimensional manifold M oriented by the atlas \mathcal{A} : With a partition of unity h_{1}, \ldots, h_{N} as above, and motivated by (\ddagger), ($\ddagger \ddagger$) we define

$$
\int_{M} \omega=\sum_{i=1}^{N} \int_{U_{\alpha_{i}}} \varphi_{\alpha_{i}}^{*}\left(h_{i} \omega\right)
$$

- Lemma: This is independent of the particular choice of the choice of partition of unity.
- Stokes Thm: M is a compact oriented k - $\operatorname{dim} C^{2}$ manifold-with-boundary in \mathbb{R}^{n} and ∂M is oriented by $\left\{\begin{array}{ll}\left\{\widetilde{\varphi}_{\alpha}\right\}_{\alpha \in \Lambda_{\text {bdry }}} & \text { if } \mathrm{k} \text { is even } \\ \left\{\widehat{\varphi}_{\alpha}\right\}_{\alpha \in \Lambda_{\text {bdry }}} & \text { if } \mathrm{k} \text { is odd, } \widehat{\varphi}_{\alpha}\left(x_{1}, \cdots, x_{k-1}\right)=\widetilde{\varphi}_{\alpha}\left(-x_{1}, x_{2}, \cdots, x_{k-1}\right) .\end{array}\right.$ Then $\int_{M} d \omega=\int_{\partial M} \omega$ for any $C^{1}(k-1)$-form ω defined on an open $V \supset M$.
- Volume form $v=\sum_{I \in \mathcal{I}_{k, n}} b_{I} d x_{I}$ is the k-form on M (assuming M oriented) which is defined on $M \cap W_{\alpha}$ by

$$
b_{I}=\frac{\left(\operatorname{det} D \varphi_{\alpha I}\right) \circ \varphi_{\alpha}^{-1}}{\sqrt{\left(\operatorname{det}\left(\left(D \varphi_{\alpha}\right)^{\mathrm{T}} D \varphi_{\alpha}\right)\right) \circ \varphi_{\alpha}^{-1}}}, \quad I \in \mathcal{I}_{k, n}
$$

and this expression is independent of α (i.e. we get the same result on $M \cap W_{\alpha} \cap W_{\beta}$ if we use the chart φ_{β} in the definition instead of φ_{α}).

- Proof that v has "length 1 " in the sense that $\sum_{I \in \mathcal{I}_{k, n}} b_{I}^{2} \equiv 1$ on M.
- (Connection between integration of functions and integration of forms.) Let M be a compact oriented k-dimensional C^{1} submanifold with boundary (possibly with $\partial M=\varnothing$) and v the volume form of M. Then for any $C^{0} k$-form ω on $M, \int_{M} \omega=\int_{M}\langle\omega, v\rangle$, where $\langle\omega, v\rangle$ is the
inner product defined to be $\sum_{I \in \mathcal{I}_{k, n}} a_{I} b_{I}$ in case $\omega=\sum_{I \in \mathcal{I}_{k, n}} a_{I} d x_{I}$ and $v=\sum_{I \in \mathcal{I}_{k, n}} b_{I} d x_{I}$. In particular (since $\langle v, v\rangle=\sum_{I \in \mathcal{I}_{k, n}} b_{I}^{2} \equiv 1$) we have $\int_{M} v=\int_{M}\langle v, v\rangle=\int_{M} 1=k-\operatorname{vol}(M)$ (which explains why v is called the volume form).
- When $k=n-1: M$ is compact oriented with volume form $v=\sum_{j=1}^{n} b_{j} d x_{1} \wedge \cdots d x_{j-1} \wedge$ $d x_{j+1} \wedge \cdots d x_{n} \Rightarrow v=\sum_{j=1}^{n}(-1)^{j-1} b_{j} \underline{e}_{j}$ is a continuous unit normal for M.
- When $k=n, D \varphi_{\alpha}$ is an $n \times n$ matrix, so $\operatorname{det} D \varphi_{\alpha}$ makes sense and is non-zero, so WLOG we can assume it is positive in U_{α} (otherwise replace it by $\varphi_{\alpha} \circ R$ where R is the reflection $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$), in which case the atlas automatically orients M (since $\varphi_{\alpha \beta}=$ $\varphi_{\beta}^{-1} \circ \varphi_{\alpha}$ then has Jacobian matrix of positive determinant). Also, in this case $k=n, V=$ $M \backslash \partial M$ is open subset of \mathbb{R}^{n} and $\partial V=\partial M$ (see hw10, Q.4). In this case Stokes theorem (applied to the $(n-1)$-form $\omega=\sum_{i=1}^{n}(-1)^{i-1} a_{i} d x_{\hat{i}}$, where a_{j} are C^{1} in an open $U \supset V \cup \partial V$), implies the "divergence theorem" that

$$
\int_{V} \operatorname{div} \underline{a}=\int_{\partial V} \underline{a} \cdot v
$$

where $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)^{\mathrm{T}}, \operatorname{div} \underline{a}=\sum_{j=1}^{n} D_{j} a_{j}$ and v is the unit normal of $\partial V(=\partial M)$ pointing out of V.

- When $k=2, n=3$, Stokes Theorem (applied to the 1 -form $\sum_{j=1}^{n} a_{j} d x_{j}$) gives

$$
\int_{M}(\nabla \times \underline{a}) \cdot v=\int_{\partial M} \tau \cdot \underline{a} d s,
$$

where s is the arc-length parameter on $\partial M, \nabla \times \underline{a}=\left(D_{2} a_{3}-D_{3} a_{2}, D_{3} a_{1}-D_{1} a_{3}, D_{1} a_{2}-D_{2} a_{1}\right)^{\mathrm{T}}$, v is the unit normal of M, and τ is the unit tangent of ∂M, oriented so that $v=\tau \times \gamma$, where at each point $q \in \partial M,\left.\gamma\right|_{q}$ is the unit vector in $T_{q} M$ which is normal to τ and points into M. (Q. 2 of hw10.)

- Applications of Stokes Theorem, including proofs of the fundamental theorem of algebra and the Brouwer fixed point theorem.

